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Layers of Learning

Gilberto Titericz Junior (top-ranked user on Kaggle.com) used this setup to
win the $10,000 Otto Group Product Classification Challenge.

33 models???
3 levels???

Lasagne NN??



http://kaggle.com

Why so many models?

A single model on its own is often prone to
bias and/or variance.

e Bias - Systematic or “consistent” error.
Associated with underfitting.

e Variance - Random or “deviating” error.
Associated with overfitting. - - .

Variance

Oplimum Mode! Complexity

Error

 J

Model Complexity

A tradeoff exists. We want to minimize both
as much as we can.

@ Source



http://scott.fortmann-roe.com/docs/docs/BiasVariance/biasvariance.png
http://scott.fortmann-roe.com/docs/docs/BiasVariance/biasvariance.png

Ensembles and Hypotheses

e Recall the definition of “hypothesis.”

e Machine learning algorithms search the hypothesis space for hypotheses.
o Set of mathematical functions on real numbers
o Set of possible classification boundaries in feature space

e More searchers — more likely to find a “good” hypothesis

Source
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Introduction: Ensemble Averaging

Basic ensemble composed of a committee of learning algorithms.

Results from each algorithm are averaged into a final result, reducing
variance.
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More Sophisticated Ensembles

Three important ensembles to know:

Boosting Bagging Stacking

®
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Boosting

A sequential ensemble. Models are applied one-by-one
based on how previous models have done.

e Apply a model on a subset of data.
e Check to see where the model has badly classified Boosting decreases

data. bias and prevents
e Apply another model on a new subset of data, underfitting.

giving preference to data badly classified by the

model.
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Weak Learners

Important concept in boosting.

Weak learners do only slightly better than the baseline | Pecision Stume

for a given dataset. In isolation, they are not very
User|. Yellow

Green

Lemon

While boosting, we improve these learners
sequentially to create hyper-powered models.
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AdaBoost

Short for adaptive boosting. Sequentially generates weak learners, adjusting
newer learners based on mistakes of older learners

Combines output of all learners into weighted sum
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Final classifier is weighted
combination of weak elassifiers

H(x) = sign(ah (x)+ e, (x)+ a.h(x)) Source
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XGBoost

Short for eXtreme Gradient Boosting. Sequentially
generates weak learners like AdaBoost

e Updates model by computing cost function
o Computes gradient of cost function
o Direction of greatest decrease = negative of
gradient
o Creates new learner with parameters
adjusted in this direction

@ Source
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Bagging

Short for bootstrap aggregating.

A parallel ensemble. Models are applied without

Bagging decreases
knowledge of each other. el

variance and
prevents

e Apply each model on a random subset of data. .
overfitting.

e Combine the output by averaging (for
regression) or by majority vote (for classification)
e A more sophisticated version of ensemble

averaging.
@ Source
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Random Forests

Designed to improve accuracy over CART.
Much more difficult to overfit

e Works by building a large number of

CART trees
o Each tree in the forest “votes” on
outcome
o Qutcome with the most votes
becomes our prediction

Source
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Random Forests

e Random forest changes each tree’s training data

o Disadvantage: Makes model harder to understand and follow
e Each tree is trained on a random subset of the data

o Example - original data: 12345

o New data:

245217 ---->first tree
41321---->second tree

3515 2 ---->third tree



Random Forest Parameters

e Minimum number of observations in a branch
o nodesize parameter, similar to minbucket in CART
o Smaller the node size, more branches, longer the computation

e Number of trees
O ntree parameter
o Fewer trees means less accurate prediction
o More trees means longer computation time
o Diminishing returns after a couple hundred trees



Stacking

Linear regression...

...on models.

@ Source Source
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Stacking pt. 1

Assumption: can improve performance by taking a
weighted average of the predictions of models.

e Take a bunch of machine learning models.

e Apply these models on subsets of your data (how
you choose them is up to you).

e Obtain predictions from each of the models.
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Stacking pt. 2

Once we have predictions from each individual
model...

e Perform linear regression on the predictions.
o This gives you the coefficients of the
weighted average.
e Result: a massive blend of potentially hundreds
of models.
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CDS Core Team Example: Stacking

CDS Kaggle Team (2017 March
Madness Kaggle competition)

T & LOUISVILLECARDINATS"&

e Each member of the Kaggle
team made a logistic regression
model based on different
features

e Combined these using a stacked
model
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Coming Up
Your problem set: Project 2

Next week: Machine learning on text data

See you then!

Cornell Data Science



